skip to main content


Search for: All records

Creators/Authors contains: "Phoha, Vir V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While many research efforts on Cyber-Physical System (CPS) security are devoted to attack detection, how to respond to the detected attacks receives little attention. Attack response is essential since serious consequences can be caused if CPS continues to act on the compromised data by the attacks. In this work, we aim at the response to sensor attacks and adapt machine learning techniques to recover CPSs from such attacks. There are, however, several major challenges. i) Cumulative error. Recovery needs to estimate the current state of a physical system (e.g., the speed of a vehicle) in order to know if the system has been driven to a certain state. However, the estimation error accumulates over time in presence of compromised sensors. ii) Timely response. A fast response is needed since slow recovery not only comes with large estimation errors but also may be too late to avoid irreparable consequences. To address these challenges, we propose a novel learning-based solution, named sequence-predictive recovery (or SeqRec). To reduce the estimation error, SeqRec designs the first sequence-to-sequence (Seq2Seq) model to uncover the temporal and spatial dependencies among sensors and control demands, and then uses the model to estimate system states using the trustworthy data logged in history. To achieve an adequate and fast recovery, SeqRec designs the second Seq2Seq model that considers both the current time step using the remaining intact sensors and the future time steps based on a given target state, and embeds the model into a novel recovery control algorithm to drive a physical system back to that state. Experimental results demonstrate that SeqRec can effectively and efficiently recover CPSs from sensor attacks. 
    more » « less
    Free, publicly-accessible full text available December 5, 2024
  2. The recent prevalence of machine learning-based techniques and smart device embedded sensors has enabled widespread human-centric sensing applications. However, these applications are vulnerable to false data injection attacks (FDIA) that alter a portion of the victim's sensory signal with forged data comprising a targeted trait. Such a mixture of forged and valid signals successfully deceives the continuous authentication system (CAS) to accept it as an authentic signal. Simultaneously, introducing a targeted trait in the signal misleads human-centric applications to generate specific targeted inference; that may cause adverse outcomes. This paper evaluates the FDIA's deception efficacy on sensor-based authentication and human-centric sensing applications simultaneously using two modalities - accelerometer, blood volume pulse signals. We identify variations of the FDIA such as different forged signal ratios, smoothed and non-smoothed attack samples. Notably, we present a novel attack detection framework named Siamese-MIL that leverages the Siamese neural networks' generalizable discriminative capability and multiple instance learning paradigms through a unique sensor data representation. Our exhaustive evaluation demonstrates Siamese-MIL's real-time execution capability and high efficacy in different attack variations, sensors, and applications. 
    more » « less